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PREFACE

This report was prepared by Austin Kovacs, Research Civil Engineer,
of the Foundations and Materials Research Branch, Experimental Engineering
Division, CRREL, by Frank Michitti, a research civil engineer formerly
with CRREL, and by John Kalafut, Electrical Engineer, of the Engineering
Services Branch, Technical Services Division, CRREL. Funding was pro-
vided by DA Project 1T061101A91A, In-House Laboratory Independent Research.
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UNCONFINED COMPRESSION TESTS ON SNOW
A Comparative Study

Introduction

In 1967 field tests were made (Kovacs et al. 1969) on the unconfined
compressive strength of polar snow and ice. The study was performed at
Camp Century, Greenland, where samples with densities varying from 0.3L40
to 0.890 g/cm? were tested. In that report, the authors made reference to
the significance of the scatter in the test results and put forth "that the
primary cause of scatter in the test results data is associated with the
singular or combined effects of nonaxially loaded and/or irregularly sur-
faced specimen ends, and to a lesser degree due to the inherent crystalline
or structural flaws." If the scatter were related to nonaxially loaded
specimens or to irregularly surfaced specimen ends, it was stated that the
more realistic unconfined compressive strengths would be the highest ones.
These strengths would have been "obtained from tests in which the samples
had most careful preparation and alignment within the testing machine."

Further consideration was given to the alignment problem which resulted
in the development of a new platen system designed to ensure nonaxial align-
ment of unconfined ccmpression test specimens. A description of this platen
system and some preliminary results obtained with its use in testing the un-
confined compressive strength of freshwater ice are given in a Progress
Report "On a Platen Concept for Use when Testing Brittle Materials" (Kovacs
1970). This report indicated that unconfined compression test specimens,
no matter how carefully aligned on top of a conventional ball platen, were
still misaligned. Therefore the specimens failed at an average lcad 30%
lower than the apparently more perfectly aligned samples loaded on top of
the new self-aligning platen system.

As a result of these findings it was decided to perform additional un-
confined compression tests on Greenland snow for the purpose of determining
if the use of the new platen system would result in strength values higher
than those previously reported. It was anticipated that the new platen
system would provide better sample alignment in the testing machine and,
therefore, a more uniform stress field across the ends of the sample. If
true, the expected higher strengths would support the reasoning advanced
by Kovacs et al. (1969) quoted above. This report presents the findings
of unconfined compression tests performed at CRREL on 0.600- to 0.625-g/cm3
density snow from Camp Century, Greenland - tests which do support the
reasoning of Kovacs et al. (1969).

S les

Samples of polar snow for this study were obtained from the Inclined
Drift at Camp Century, Greenland (Kovacs et al. 1969). Test specimens
were selected which had a density between 0.600 and 0.625 g/cm®. Their
average density was 0.612 g/cma. This density range was selected for com-
parison with 15 samples of the same snow tested by Kovacs et al. (1969),
whic% had densities between 0.600 and 0.625 g/cm?® for an average of 0.617
g/em?,




The samples for this study were prepared in a special jig mounted on a
lathe. Each sample was prepared as a smooth-faced right cylinder with ends
cut smooth and "flat." The length, diameter and density of each is shown in
Table I. The average length and diameter were 20.7 and 7.5 cm, respectively,
for a length to diameter ratio of = 2.75 toc 1. This ratio was selected to
minimize the effects of end constraint, which becomes severe below a ratio of
2 ta L,

The samples of Kovacs et al. (1969) were cut to a standard length and
planed smooth at the ends on a modified table sander. The ends were then hand-
honed on fine-grained emery paper to remove minor surface irregularities.
Extreme care was also taken to ensure that the side of each sample was
perpendicular to the ends. Final samples averaged 7.6 cm in diameter and
21.0 cm long, which also gave a length to diameter ratio of =2.75 to 1.

Test Equipment

The press used in this study was the same one used by Kovacs et al.
(1969) at Camp Century. The four-legged frame and cross heads of the press
were made with thick steel components prestressed to ensure low compliance
under load. A load cell was fixed to the bottom of the upper cross head
and a hydraulic ram was built into the base assembly. For the Greenland tests,
the ball platen hung from the bottom of the load cell. This rather standard
platen configuration did not ensure axial alignment or proper seating of the
test specimen. For the comparative test presented in this report, a proto-
type platen system was connected to the top of the ram piston. It is described
by Kovacs (1970) as follows:

As shown in Figure 1, the platen system consists of a number of
components. These include the often used platen and platen ball
section with the platen ball fixed to the cap of the lower assembly.
Highly polished and hardened steel inserts form the underside of
the cap and upper face of the base. These inserts have a flatness
better than 1/100,000 in. Between these inserts is a loose array
of precision balls which give the cap, and therefore the platen,
the unique and important feature of 360O of lateral translation as
well as circular rotation on the plane of the base insert. The leaf
springs, fixed to the cap, center the cap over the base. The tension
springs between the cap and the platen collar help to keep the platen
surface relatively level during raising of the test sample against
the upper surface of the testing machine (i.e. the base of the load
cell).

Besides providing anchorage for the tension springs, the platen
collar supports three linear variable differential transformers
(LVDTs). The LVDTs are used to measure sample deflection under
load and indirectly provide a means of measuring press speed and
time to failure. Signals from the LVDTs and the load cell are
recorded at 60 in./sec on a high speed magnetic tape recorder and
then played back at 1 7/8 in./sec into an X-Y plotter. The latter
provides a graphic printout of the complete load vs deflection
history of the test specimen up to failure.
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The above platen system can be used as follows. A test speci-
men is placed upon the platen, the ram is activated and the speci-
men is lifted upward against the rigid load cell. At contact the
specimen automatically seats itself. This is possible because the
cap is free to move laterally, allowing the platen to pivot the
specimen into proper alignment. (This movement is illustrated in
Figure 2.) The above technique is most desired when the test is
to be performed at a set press speed. The automatic alignment
feature allows the machine to come up to speed prior to specimen
contact with the upper bearing surface.

When press speed is not important and lateral translation of
the cap is not desired during the test, the test can be performed
as follows. The specimen is brought into alignment by applying a
very "low" seating load. The cap is then immobilized by seating
the locking screws (shown in Figure 1). Loading is then continued.

A second generation platen system has been designed to eliminate the need
to stop and lock the cap (Kovacs 1970). In this study the first generation
platen assembly was not locked.

Test Results

It has been shown that when unconfined compression tests are performed
on snow ice above -21.4°C at a strain rate faster than 0.0035/s, there is no
significant change in the failure stress (Carter 1970). Strain rates lower
than 0.0035/s can have a significant effect upon the failure stress
(Korzhavin 1962); therefore, to reduce the strain rate effect, for which
there is no satisfactory correction, only samples which failed at rates higher
than 0.0030/s were selected for use in this comparative study.

The time to failure and strain at failure for the unconfined compression
test specimens used in this study (Table I) averaged 0.75 s and 0.00318 s,
respectively. The average strain rate was 0.0042/s compared with 0.00L9/s
for the samples tested at Camp Century (see Table I). The fact that the
average strain rate for this test program and the one made at Camp Century
are azbove 0.0035/s and in close agreement with one another should eliminate
bias in the failure stress due to strain rate effects and should make direct
comparison between the tests possible.

The unconfined compressive strengths listed in Table I show that the
specimens tested at Camp Century, Greenland, failed at an average unconfined
compressive strength o, of 21.2 kgf/cm2 (302 psi) while those tested on the
new self-aligning platen system at CRREL failed at 27.0 kgf/cm? (38L psi), a
27% higher stress level. However, Table I also shows that the samples
tested in Greenland were at -25°C while those tested at CRREL were 3~ to SOC
warmer. There are numerous reports (e.g. Carter 1970, Bender 1957, But-
kovich 1954, Kovacs 1967, Mellor and Smith 1966, Peyton 1966, Veinberg 1929,
Vitman and Shandrikov 1938, Weeks and Assur 1969, and Wolfe and Thieme
1963) which discuss the 0, dependence of snow or ice on temgerature.

Carter (1970), for example, shows that between «10" and -30°C the strength
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of snow ice changes at approximately 2.2 kgf/cm? ol 28 i | psi/OC). This
rate of strength increase is high in comparison to those found by most
other investigators. The norm is perhaps best expressed by the o, vs t
perature data of Butkovich (1954), Vitman and Shandrikov (1938) and Wol
and Thieme (1963). Their data show that in the temperature range of -2
to -LO7C the unconfined comgressive strength of ice changes at the rate of
=0.75 kg/cm? “C (=11 psi/ C). To conform withothe Camp Century test tem-
pergture, the &% values obta‘ned at -20 and -22 C have been adjusted to
-25°C using the above correction. In so doing the average J, value for the
laboratory tests becomes 30.2 kg/cm? (430 psi) and the difference between
the average of the lower Camp Century 0, values and that of the laboratory

0, values increases to L2%.
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It was pointed out that the output from the three LVDT's, which recorded
sample deflection and the output from the load cell, were recorded on a high-
speed magnetic tape recorder. These signal data were then played back at a
much slower speed into an X-Y plotter. Load vs deflection, load vs time,
and deflection vs time plots could thus be obtained. Work sheets with the
locad-deflection and load-time curve for each specimen are shown in Figures
3-18. Electrical noise within the CRREL laboratory picked up by the tape
recorder caused the saw-tooth microrelief on the curves. Various filtering
techniques were tried in an attempt to eliminate the noise and smooth the
curves but they were abandoned when it was noted that the data were
adversely affected. The curves nevertheless are exceedingly interesting,
for they provide a new insight into the stress-strain behavior of firn and,
as Kovacs (1970) has shown for ice up to. failure, a load history which can
only be observed through the use of a high-speed recorder.

Examination of the load-deflection curves (i.e. stress-strain curves)
shows that there was very little curvature prior to Hookian behavior and that
the load-deflection curves show one or more steps. The strain adjustment
events were not the record of LVDT seating. This is clear from the load vs
time curves, which show that each step in the load-deflection curve was ac-
companied by a sudden decrease in load. This would suggest that stress con-
centrations were being released by some dilatory event, perhaps one associated
with the movement of line defects or the formation of microcracks. This
phenomenon was observed in the Camp Century test data (see, for example,
stress-strain curves 30 V-2 and 30 V-3 of Fig. 10 in Kovacs et al. 1969) but
was not referred to in Kovacs et al. (1969) due to an uncertainty of the
reality of such a phenomenon. Experiments by Hudson et al. (1971) indicate
that dilatory adjustments also occur in the stress-strain curves of marble,
sandstone and concrete tested in unconfined compression.

With scme tests the tangent moduli ET increased after dilation (see Fig.
16) while in others there was a decrease (see Fig. L). However, for the
majority of the tests there was no significant change in ET as a result of
dilation. This was surprising as it infers that no "hardening or stiffening"
nor structural weakening occurred during this stress-strain readjustment.

The tangent and secant moduli for each test are listed in Table I. No
temperature adjustment has been made in moduli from the laboratory tests to
conform to the temperature of the Camp Century tests. The reason is that
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Nakaya (1959) has shown that between ~10° and -BOOC there is only a 2.0%
change in the dynamic modulus per °C. One may assume that the same would

be true for the static modulus. Table I shows that the average tangent
modulis obtained from the laboratory tests (17,300 kgf/em? or 2L6,000 psi)
and from the Camp Century tests (16,880 kgf‘/cmé or 240,000 psi) are nearly
the same. The slight difference which does exist is probably related to

the method used to analyze the data from Camp Century, i.e. masking dilation
steps in the stress-strain curves. Therefore, for all intents and purposes
the tangent moduli are within experimental error and show, as expected, that
the two studies were performed on firn with the same structural properties.

In a number of tests following the last dilation recorded the load did
not immediately drop to zero but held momentarily or even tried to increase.
This may be seen in Figures T, 12, 15, and 1T7.

Discussion

The strength of snow varies not only with its density and structure but
also with external conditions which change its internal nature and stress
distribution. In this respect snow and ice exhibit a complexity of poly-
phases which makes determination of their physical and mechanical properties
directly related to the external conditions existing at the time of each de-
termination. Although experiments have been performed on snow and ice during
which certain external conditions have been held constant (e.g. temperature,
strain rate, load rate, stress, specimen size, etc.), the physical nature of
the deformation and strength properties of snow is still not clearly under-
stood. Attempts to develop theories related to snow deformation or collapse
under load have therefore lacked agreement with fact. This difficulty is
related to the physical nature of snow or ice whose strength and structure
change directly with external conditions which have not been adequately de-
termined or taken into consideration.

In this comparative study every effort was made to limit the variables
known to affect unconfined compression test results. This included the use
of snow samples of virtually the same size, shape and density obtained from
the same location. The hydraulic testing machine used for the Camp Century
tests was also used at CRREL. The strain rate was nearly the same for both
studies but most importantly averaged above 0.0035/s, the rate below which
the failure strength of ice increases rapidly and above which no apparent
increase in failure strength occurs. The temperature was warmer for the
CRREL tests but this effect could be corrected for.

Two variables did exist which made the samples tested and the test
apparatus used at CRREL different from those used in the Camp Century study.
First, while careful sanding and hand honing of specimen ends was performed
on each Camp Century specimen to ensure that the ends were flat, parallel,
and perpendicular to the sample axis, it must be considered that the samples
prepared on the lathe at CRREL were more nearly perfect right cylinders with
flatter ends. GSecondly, the platen assembly used at CRREL was, of course,
significantly different from that used at Camp Century. Determining the
exact contribution of these two variables to the net gain in the o, values
noted in the CRREL tests is not possible; however, the relative contribution
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is. Kovacs (1970) performed unconfined compression tests on freshwater

ice samples of the same size and shape as those used in this study. The
samples were made into right cylinders on the same lathe and tested on the
same hydraulic press. The significance of these tests is that the samples
tested on the new platen assembly failed at an average 30% higher stress
level than similar samples tested on a conventional platen-ball assembly.

It may thus be reasoned that of the 42% increase in the average failure
stress of the firn samples tested at CRREL over those tested at Camp Century,
30% is the result of better alignment on the new platen assembly and 12% is
due to better specimen preparation.

While the noted increase in failure stress is significant and represents
the highest o, values obtained to date on 0.60-0.625 g/cm3 density snow at
these strain rates, the scatter in the data has not been reduced. It is
speculated that the scatter is not that associated with imperfect sample pre-
paration or imperfect sample alignment but is the result of inherent crystal-
line or structural flaws.

The load-deflection curves all show that strain dilation accompanied by
load reduction occurred during each of the unconfined compression tests made
at CRREL. These adjustments characteristically occurred in 8 ms, during
which the highest load decrease noted was 208 kg (L60 1b) and the highest
deflection measured was 0.025 cm (0.0l in.). The cause of this dilation
phenomenon may be associated with strain adjustment around internal disloca-
tions or microfractures (Savage and Mohanty 1969) or with initial splitting
of the test specimen into a columnar structure prior to failure. Kovacs
(1970) has explained the dislocation as follows:

Whatever the cause, it can be postulated that failure may be
brought on prematurely by the elastic-response of the testing
machine during this strain adjustment. The reasoning here is that
during strain-adjustment the machine is suddenly unloaded and
elastically tries to return to its fully unloaded state. The sam-
ple, in the process of adjusting to receive additional load, is
suddenly overloaded by the "onrushing" machine and fails. If this
is what happened at failure then the test specimens could have
sustained even greater loads. At the least it points out the de-
sirability of performing unconfined compression tests with a stiff
machine, i.e. one with "little" compliance, to ensure against pre-
mature failure (Kovacs 1970).

For a description of stiff testing machines see, for example, Bieniawski
(1966, 1967, 1968 and 1969), Hawkes and Mellor (1970), Hudson et al.
(1971), and Rummel and Fairhurs* (1970).

Conclusion

The results of this study support the contention of Kovacs et al. (1969)
that their unconfined compressive strengths of Camp Century snow and ice
may be low due to possible irregularities on the specimen ends and/or non-
axially loaded samples. Either of these conditions would cause a nonuniform
stress field to exist across the sample ends and cause samples to fail at a
lower stress level than if a uniform stress field existed. The combined
effect of preparing cylindrical firn samples on a lathe and testing them on

T
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a new multi-degree-of-freedom, self-aligning platen assembly at CRREL was

a significant increase (42%) in the average unconfined compressive strength
of 0.600- to 0.625-g/cm3 density snow over that of samples tested at Camp
Century, Greenland. These results coupled with those of Kovacs (1970)

show the advantage of using a self-aligning platen system to ensure nonaxial
loading of unconfined compression test specimens. It is hoped that other
investigators will make similar comparative unconfined compression tests to
further document the merit of self-aligning platen systems. With guarded
optimism the author believes that such tests will show higher strength
values consistently obtained with the use of a self-aligning platen assembly.
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Figure 1. Multi-degree of freedom self-aligning proto-
type platen assembly used to eliminate misalignment of
unconfined compression test specimens.
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and load-deflection data from test GR-4.
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Work sheet of X-Y plotter trace of load-time
and load-deflection data from test GR-5.
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Work sheet of X-Y plotter trace of load-time

and load-deflection data from test GR-11.

Figure 8.
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Figure 9.
and load-deflection data from test GR-13.
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and load-deflection data from test GR-14.,

Figure 10.
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Work sheet of X-Y plotter trace of load-time
-deflection data from test GR-15.
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Figure 11.
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Figure 12, Work sheet of X-Y plotter trace of load-time and load-deflection
data from test GR-16. (Note insert which illustrates that load-deflection
curve can also be used as the stress-strain curve)
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Work sheet of X-Y plotter trace of load-time
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and load-deflection data from test GR-17.

Figure 13.
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Figure 14. Work sheet of X-Y plotter trace of load-time
and load-deflection data from test GR-18.
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Figure 15. Work sheet of X-Y plotter trace of load-time
and load-deflection data from test GR-21,
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Work sheet of X-Y plotter trace of load-time
and load-deflection data from test GR-22.

Figure 16.
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Figure 17. Work sheet of X-Y plotter trace of load-time
and load-deflection data from test GR-25.
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Figure 18. Work sheet of X-Y plotter trace of load-time
and load-deflection data from test GR-26.
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